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Using the method of "superelements," the thermoelasticity problem is solved for a hollow cylinder with liquid
sodium flowing inside the cylinder. The problem for each superelement is reduced to a system of difference
equations solvable by the iteration method. The influence of the swelling of the crystal lattice of steel on the
stressed-strained state is taken into account in the case where carbon penetrates into the lattice.

Transfer of carbon by a sodium coolant in heat-exchange installations leads to the saturation of structural ele-
ments with it. Under the action of carbon on the structure of steel, its chemical composition and physicomechanical
and thermophysical characteristics change with the depth of saturation, resulting in the need for evaluating the stressed-
strained state of a member in the context of the mechanics of inhomogeneous structures.

To describe the process of diffusion of carbon into a wall of a tube inside which liquid sodium flows, one
must primarily know the temperature distribution in the tube at a known temperature of the coolant at the inlet.

Let us consider the solution of the problem concerning the distribution of temperatures over the tube length
in a wall T(z, r) and in a liquid metal θ(z, r) which flows in this tube. The temperature of the liquid sodium at the
inlet to the tube is constant over the cross section. The temperature at the outer boundaries of the tube is (Fig. 1)

T = T2 (z)   for   r = R2 ,   0 ≤ z ≤ L ;   T = T3 (r)   for   z = 0 ,   R1 ≤ r ≤ R2 ;   

T = T4 (r)   for   z = L ,   R1 ≤ r ≤ R2 . (1)

The temperature T4(R1) is equal to the sodium temperature to be determined at the outlet from the tube.
The inner surface of the tube is exposed to carbon. The flow of the coolant is considered to be stabilized hy-

drodynamically with a Poiseuille longitudinal velocity profile, i.e., the transverse velocity component is Vr = 0, whereas
the longitudinal velocity component is Vz = Vz(r) = V0(1 − r2 ⁄ R1

2) and it remains constant over the tube length.
It is suggested that the thermophysical properties of the coolant are temperature-independent, while the energy

dissipation due to viscous friction and the work of pressure forces are negligibly small.
The thermophysical properties of the tube material are considered to be dependent on the temperature and

concentration of the carbon diffusing from the surface.
Penetration of the carbon into the tube wall is described by the differential diffusion equation for the concen-

tration c of the diffusing substance (0 ≤ c ≤ 1, 1 wt.%)

div (D grad c) = 
∂c

∂t
(2)

with the following boundary and initial conditions:

c = 0   for   R1 ≤ r ≤ R2 ,   t = 0 ;   c = 0   for   r = R2 ,   c = c (t, z)   for   r = R1 ,   t ≥ 0 . (3)
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Here D = D0 exp (−Q ⁄ (RT)). The source of carbon saturation is of medium power; therefore, in conformity with the

law [1] c(t, z) = B 
k(T) + 1

k(T)
 exp 


− 

Q
RT



 tn, the concentration of the carbon reaches 1 wt.% and then remains constant,

i.e., the inverse kinetics is not yet taken into account.
Since the rate of diffusion of the carbon into the tube wall is considerably lower than the velocity of propa-

gation of heat, its thermal regime will be considered to be stationary. Then the temperature field in the tube wall sat-
isfies the differential equation

div (λst grad T) = 0 (4)

and boundary conditions (1). Here λst = λst(c, T).
The steady-state energy equation describing the temperature distribution in the coolant flow at Peclet numbers

Pe = V0R1
 ⁄ a >> 1 (where a is the thermal diffusivity), when the heat transfer along the tube by heat conduction can be

neglected compared to the convective transfer, has the form 

cp ρVz 
∂θ
∂z

 = 
λsod

r
 
∂
∂r




r 
∂θ
∂r




 . (5)

The boundary conditions for Eq. (5) are as follows:

∂θ
∂r



 r=0

 = 0   (symmetry  condition  on  the  tube  axis) , (6)

θ z=0 = Tinl , (6′)

λst 
∂T

∂r



 r=R1

 = λsod 
∂θ
∂r



 r=R1

 ,   T r=R1
 = θ r=R1

 . (6′′ )

On the wall (r = R1), we prescribe condition (6′′ ) for an ideal liquid metal–solid wall thermal contact. This condition
is more rigid than that of the convective heat exchange, which will lead to a less favorable stress distribution than the
actual one. This gives a safety factor.

Boundary-value problems (1)–(6), (6′), and (6′′ ) describe the coupled problem of heat and mass transfer.
Replacing boundary-value problems (1), (4), (2), and (3) by the variational problems equivalent to them with

a search for a functional minimum at a fixed instant of time, we apply the finite-element method, the Ritz procedure,
and the Crank–Nicholson difference scheme. As a result, we obtain the system of difference equations [2]

A1Ti,j − A2Ti,j−1 − A3Ti+1,j − A4Ti−1,j − A5Ti,j+1 = 0 ,

F1ci,j
k+1

 + F2ci,j−1
k+1

 + F3ci+1,j
k+1

 + F4ci−1,j
k+1

 + F5ci,j+1
k+1

 + F6ci+1,j−1
k+1

 + F7ci−1,j+1
k+1

 =

Fig. 1. Boundary conditions.
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= H1ci,j
k

 + H2ci,j−1
k

 + H3ci+1,j
k

 + H4ci−1,j
k

 + H5ci,j+1
k

 + H6ci+1,j−1
k

 + H7ci−1,j+1
k

 , (7)

where i = 2, ..., N; j = 2, ..., M; k = 0, ..., P, P is the number of time steps; ci,j
k  is the carbon concentration at the node

(i, j) at the instant of time tk; Ti,j = T(zi, rj); A1, A2, ..., A5, F1, F2, ..., F7, H1, H2, ..., H7 are the known coefficients
dependent on the coordinates zi and rj of the nodes and on the average values of the coefficients of thermal conduc-
tivity and diffusion in the elements; (N + 1)⋅(M + 1) is the number of nodes, c1,j

0  = 0, cN+1,j
0  = 0, ci,M+1

0  = 0, and
ci,1

k  = c(tk, zi).
The difference analogs of Eq. (5) and conditions (6)–(6′′ ) with the use of the "upwind" approximation of a

derivative are as follows [3]:

cp ρVj 
θi,j − θi−1,j

hz

 = 
λsod

hr
2
rj

 

rj+1 ⁄ 2 


θi,j+1 − θi,j

 − rj−1 ⁄ 2 

θi,j − θi,j−1



 ,   j = 2, ..., S ;   i = 2, ..., N ;

cp ρV1 
hr

2

4
 

θi,1 − θi−1,1

 = λsod 

θi,2 − θi,1

 hz ,   i = 2, ..., N ,
(8)

where Vj = Vz(rj) = V0




1 − 

rj
2

R1
2




; rj%1 ⁄ 2 = rj = % 

hr

2
; θ1,j = Tinl (j = 1, ..., S); V0 = 

2G

ρπR1
2.

The coupled heat and mass transfer problem (7)–(8) is solved following the scheme described in [4]. Here, in
order that the temperature fields in both the wall and the coolant and the concentration of carbon in the wall be de-
termined, at each time step we use the iteration method. The thermoelasticity problem must also be solved at each
time step of this kind. To do this, we apply the method of superelements. The cylinder is subdivided into N superele-
ments, i.e., "disks" of the same length hz connected with each other by longitudinal couplings (Fig. 2).

The transverse shear of the "disks" is allowed, but the equilibrium condition

τrz = − 
1
r
 ∫ 
R1

r

 
∂σz

∂z
 rdr (9)

is fulfilled by analogy with the transverse bending of a beam [5].
Solving the thermoelasticity problem, we assume that within the limits of each superelement the axial strain

is constant, but it changes from "disk" to "disk."
The distribution laws for the Young modulus E, the linear expansion coefficient α, and the Poisson ratio µ

are taken to be dependent on the temperature T and the concentration of carbon c in the form E = E0(T)(1 − β(T) c),
α = α0(T)(1 − γ(T) c), and µ = µ0(T)(1 − δ (T) c).

To solve the thermoelasticity problem for each "disk" we use the finite-element method. The distribution of
the temperature and the carbon concentration over the "disk" radius is determined as the arithmetical mean over the

Fig. 2. Scheme of subdivision of the cylinder into superelements.
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"disk" thickness for each ring Tj = (Ti,j + Ti+1,j) ⁄ 2 and cj = (ci,j + ci+1,j) ⁄ 2, where i = 1, ..., N; j = 1, ..., M. We subdivide
the "disk" over the radius into M layers and apply the procedure of [6] to determine the stresses.

The circumferential stresses in the layers will be determined by summing their values, specified by contact
pressure and found by virtue of the thin-walled nature of the layers according to the theory of zero-moment shells,
with the stresses from the temperature drop over the cylinder-wall thickness and the stresses caused by the swelling of
the crystal lattice when carbon penetrates into it. To determine the axial stresses σz we take as a basis the hypothesis
for the plane strain εz = ξ = const.

Having obtained the radial, circumferential, and axial stresses σr(i, j), σθ(i, j), and σz(i, j) (i = 1, ..., N; j = 1,
..., M + 1), from formula (9) we determine the tangential stresses. The numerical differentiation is here carried out
using the Lagrange formula with five nodes, while the integration is carried out using the Simpson formula.

We consider the example of calculation performed for a cylinder with geometric dimensions R1 = 25

mm, R2 = 28 mm, and L = 1000 mm; the temperature on the cylinder surfaces varies by the linear law:

Fig. 3. Isotherms in the tube (a) and in the sodium flow (K) (b) and the lines
of equal values of the concentration of carbon (%) (c) after 2000 h. r, z, mm.

Fig. 4. Distribution of stresses (MPa) in the tube after 2000 h without account
for the swelling effect (a) and with account for this effect (b) (i, number of
the superelement, j, number of the radial node). σr, τrz, MPa.
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T2(z) = T
~

21 + 
T
~

22 − T
~

21

L
 z on the outer surface (T

~
21 = 563 K and T

~
22 = 973 K), T3(r) = T

~
31 + 

T
~

32 − T
~

31

R2 − R2
 (r − R1) on

the left  end, and T4(r) = T
~

41 + 
T
~

42 − T
~

41

R2 − R2
 (r − R1) on the right  end (T

~
31 = T

~
11 = Tinl = 513 K, T

~
32 = T

~
21, and

T
~

42 = T
~

22); 1Kh18N10T steel is used as the material. The following data obtained from [1, 7] were taken in the

calculations: D = D0 exp (−k0
 ⁄ T),  where k0 = 11,150 K and D0 = 7.4443 mm2 ⁄ h. The dependence of the thermal-

conductivity coefficient λst(c,T) [J/(mm⋅h⋅K)] on the concentration of carbon c and the temperature T and the

values of the Young modulus E (GPa) and of the linear expansion coefficient α⋅105 (1/deg) (which is taken hy-

pothetically) are presented in Table 1. The Poisson ratio is µ = 0.3, B = 2340.87, k(T) = 1 − 0.00225(T − 873 K),
n = 0.52. The swelling parameters λi (i = 1,  . . . ,  5) are the same as for 45Kh steel and have the values

λ1 = 0.0158, λ2 = − 0.0855, λ3 = 0.2143, λ4 = − 0.2422, and λ5 = 0.1024 [8]. The thermophysical characteristics of

liquid sodium are as follows [9]: cp = 1300 J/(kg⋅deg), λsod = 80 W/(m⋅deg), and ρ = 900 kg ⁄ m3. The mass flow

rate of liquid sodium is G = 0.1 kg/sec. The number of subdivision elements was taken to be equal to N = 20,

M = 10, and S = 50. The time step was to 500 h. These parameters of subdivision turned out to be sufficient to
attain the required accuracy.

The calculation results are given in Figs. 3 and 4. In all the cases considered here we used a thermosensitive
material whose properties were dependent on the concentration of carbon.

The analysis of the results obtained has shown that account for the swelling effect leads not only to a quan-
titative change in the stressed state but also to qualitative changes, which demonstrates the need for taking into ac-
count the indicated factor.

NOTATION

R1 and R2, inner and outer radii of the tube, respectively; L, tube length; r and z, cylindrical coordinates; t,
time; T and θ, temperatures of the tube and liquid sodium; Tinl, temperature of liquid sodium at the inlet to the tube;
G, mass flow rate of liquid sodium; Vr and Vz, transverse and longitudinal components of the velocity of the sodium
flow; V0, velocity of the sodium flow on the tube axis; Pe, Pe′clet thermal number; cp, specific heat of liquid sodium
at constant pressure; p, liquid-sodium density; c, relative concentration of carbon; D, diffusion coefficient; Q, activation
energy; R, gas constant; D0, constant for a given material characterizing the diffusion coefficient; B, constant charac-
terizing the change in the carbon concentration; λst and λsod, thermal-conductivity coefficients of the steel and sodium;
T2, T3, and T4, temperatures on the outer surface and on the ends of the cylinder; rj and zi, cylindrical coordinates of
the grid nodes; Vj, nodal values for the velocity of the sodium flow; ci,j, Ti,j, and θi,j, nodal values of the carbon con-
centration and of the temperature of the steel and liquid sodium; σr, σθ, σz, and τrz, radial, circumferential, axial, and
tangential stresses.

TABLE 1. Values of the Mechanical and Thermophysical Characteristics of the Material

T, K Characteristics
c

0 0.2 0.4 0.6 0.8 1

873

λst 0.330 0.237 0.207 0.187 0.177 0.174

E 127 126 125 124 122 121

α 1.59 1.59 1.59 1.58 1.58 1.58

973

λst 0.343 0.247 0.217 0.197 0.187 0.186

E 117 116 115 114 113 111

α 1.65 1.64 1.64 1.64 1.63 1.63
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